MSI步态成像分析系统

 

产品说明

         美国Mouse Specifics Inc.(MSI)公司的科学家和工程师根据多年的科研经验,于2004年开发的DigiGaitTM啮齿动物步态分析系统采用高速摄像机以底面向上的视角不断拍摄跑步机上行走或跑动的动物步态,经自动识别与分析,生成“数字爪印”和动态的步态信号,形成爪部相对于跑带位置的实时记录。由于此独特的跑步机设计,DigiGaitTM是唯一获得专利授权的啮齿动物步态分析系统,此专利验证了此套系统的实用性和创新性,以及对科学所做出的杰出贡献,其它任何技术仿造者都无法确保仪器的精确性和灵敏性。

 

工作原理

         DigiGaitTM以底面向上的视角对动物在跑带上的步态进行自动识别与分析。高速数字摄像机以15OFPS的拍摄速率从下方拍摄行走中的动物,软件自动识别老鼠头部、尾部以及四肢,识别动物脚爪底部的颜色,以优于10msec的时间分辨率,生成“数字爪印”和动态的步态信号,形成爪部相对于跑带位置的实时记录。

 

产品优势

  • 适合任何肤色的初生小鼠、大鼠、豚鼠和仓鼠等不同小型啮齿动物
  • 专利技术透明跑带跑步机:跑带速度连续可调(0-100 cm/s),精度为0.1 cm/s
  • 多用途测试:可以做水平、斜面、被动跑步和主动平面运动测试,且倾斜角度调节范围0-60度可调,精度1度
  • 方便省时:设备自带清扫工具,可对跑带上的排泄物进行清扫
  • 应用范围广:跑步隔间由透明的聚碳酸酯材料制成,跑道长度可在7.6 cm-61 cm之间调节,完全满足小型啮齿动物的实验需求
  • 任意光环境:封闭式的摄像系统和25 kHz、5000K色温的顶端照明系统,允许在任意光环境下进行步态实验
  • 高速摄像系统:150 fps,能完美捕捉到每个步态的细节信息
  • 高时间分辨率:优于10 msec的时间分辨率,生成“数字爪印”和动态的步态信号
  • 操作简单:无需标记动物脚底,软件自动识别老鼠头部、尾部、四肢顺序和脚爪
  • 数据多:DigiGait自动化记录和分析动物的爪印,可以得到约50种相关的步态指标,实验结果客观且重复性高

 

应用范围

  • 神经退化
  • 药物毒性
  • Huntington症
  • 神经病变
  • 衰老
  • 肌萎缩侧索硬化症
  • 关节炎
  • 阿尔兹海默症
  • 溶酶体堆积病
  • 脊髓损伤
  • 帕金森症

 

 

[1] Du X, Wei C, Pastor D P H, et al. α1ACT is essential for survival and early cerebellar programming in a critical neonatal window[J]. Neuron, 2019, 102(4): 770-785. e7.

[2] Quarta M, Cromie M, Chacon R, et al. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss[J]. Nature communications, 2017, 8(1): 1-17.

[3] Gennarino VA et al.  Pumilio1 haploinsufficiency leads to SCA1-like neurodegeneration by increasing wild-type Ataxin1 levels. Cell. 2015 Mar 12;160(6):1087-98.

[4] David F. Wozniak, Pamela Valnegri, Joshua T. Dearborn, Stephen C. Fowler, and Azad Bonni. 2019. Conditional knockout of UBC13 produces disturbances in gait and spontaneous locomotion and exploration in mice. Sci Rep. 9: 4379.

[5] Feng H, Larrivee CL, Demireva EY, Xie H, Leipprandt JR, Neubig RR. 2019. Mouse models of GNAO1-associated movement disorder: Allele- and sex-specific differences in phenotypes. PLoS One Jan 25;14(1).

[6] Robertson L, Featherby T, Howell S, Hughes J, Thomas P. 2019. Paroxysmal and cognitive phenotypes in Prrt2 mutant mice. Genes Brain Behav. Jun;18(5):e12566.

[7] Falk DJ, Galatas T, Todd AG, Soto EP, Harris AB, Notterpek L. 2018. Locomotor and skeletal muscle abnormalities in trembler J neuropathic mice. Muscle Nerve. Apr;57(4):664-671.

[8] Claghorn, G. C., Z. Thompson, J. C. Kay, G. Ordonez, T. G. Hampton, and T. Garland, Jr. 2017. Selective breeding and short-term access to a running wheel alter stride characteristics in house mice. Physiological and Biochemical Zoology 90:533–545.

[9] Connell JW, Allison R, Reid E.  Quantitative Gait Analysis Using a Motorized Treadmill System Sensitively Detects Motor Abnormalities in Mice Expressing ATPase Defective Spastin.  PLoS One. 2016 Mar 28;11(3):e0152413. doi: 10.1371/journal.pone.0152413. eCollection 2016.

[10] Heuermann RJ, et al. Reduction of thalamic and cortical Ih by deletion of TRIP8b produces a mouse model of human absence epilepsy. Neurobiol Dis. 2016 Jan;85:81-92.

[11] Hung YH, Walterfang M, Churilov L et al. Neurological Dysfunction in Early Maturity of a Model for Niemann-Pick C1 Carrier Status.  Neurotherapeutics. 2016 Mar 4. [Epub ahead of print] .

[12] Miyuki Sakuma, et al. Lack of motor recovery after prolonged denervation of the neuromuscular junction is not due to regenerative failure. Eur J Neurosci. 2016

[13] Xiao J, et al. Motor phenotypes and molecular networks associated with germline deficiency of Ciz1. Exp Neurol. 2016 Sep;283(Pt A):110-20. doi: 10.1016/j.expneurol.2016.05.006. Epub 2016 May 7.

[14] Chen L, et al. A53T human α-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci. 2015 Jan 21;35(3):890-905.

[15] Del Mar N, et al. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol. 2015 Sep;271:53-71.

 

         步态分析是对行走方式的客观记录,并对运动协调功能系统评价的有效手段。通过对实验动物进行研究,揭示与运动相关的神经、骨骼、肌肉等系统疾病对步态的影响,以及康复研究效果的评估。包括并不限于脊髓损伤、中风、帕金森、阿尔兹海默症、关节炎、肌萎缩等运动相关的疾病。

 

          DiGigait步态分析系统在避免人为刺激的条件下,通过检测四个脚爪的足迹、步态、速度,客观评估四肢间的协调性。广泛用于评估神经创伤、神经性萎缩、神经疾病、以及疼痛症状群的动物模型,可以了解神经疾病发展过程、评价治疗效果以及筛选治疗药物。

 

功能优秀,实验无忧

  • 可研究动物在自愿状态下行走,及在跑带上强制运动的步态。
  • 可研究动物在跳跃和奔跑状态下的步态。
  • 在已知且相同速度下,可捕捉大量步幅信息。排除实验动物因速度差异导致的实验数据分析误差。
  • 通过拍摄实验动物的整个腹部,可提供三维运动学指标,保障数据完整性。
  • 可增加实验难度,促使动物爬上或爬下斜坡,最大限度测量实验动物的运动能力。

 

案例一

 

          美国Baylor大学医学院主导发表的“RNA结合蛋白(Pum1)单倍体剂量不足导致脊髓小脑性共济失调性神经病变机制”文章中,通过使用DigiGait步态分析系统,得出研究实验结果:Pum1缺失小鼠步幅长度更短,步型(身体晃动)更大。与旷场实验、转棒仪实验,一同论证了Pum1缺失,会导致动物的运动协调性出现进行性缺失。其数据如下图所示:

 

At 12 weeks of age, Pum1−/− mice displayed a wider stance (J), decreased stride length (K), and increased stride frequency (L) compared to either WT or Pum1+/− littermates. Stance width and stride length were normalized to mouse width and body length, respectively. L = left, and R = Right. Twelve mice per genotype were analyzed.

 

案例二

 

 

          斯坦福大学神经科学院主导发表的“对于用人类肌肉干细胞和其他肌肉原生细胞制成的生物结构可以在肌肉容积缺失(Volumetric muscle loss,VML)模型动物体内产生功能性肌肉组织”报道中提示:以干细胞为基础的诊疗手段,可作为治疗急性和慢性VML的有效途径。其中,使用DigiGait步态分析系统证实使用肌肉干细胞制成的生物结构,可以显著改善VML模型动物的运动状态,具体步态分析数据见下图:

 

Exercise improves innervation of de novo myofibres and improves forces in vivo. (a) Representative image of a mouse during a gait analysis (top) and the gait footprints collected during the analysis (bottom). Mice were positioned in a transparent treadmill and a camera was positioned underneath to record the gait. (b) Quantification of the gait ‘disability score’ resulting from the analysis of 47 parameters.

 

案例三

 

 

          芝加哥大学神经科学院主导的“CACNA1A mRNA转录影响因子和二级蛋白a1ACT对于小脑早期编码的影响机制”研究中,使用步态分析系统联合转棒仪和旷场实验,论证了CACNA1A mRNA表达异常时,实验动物的运动机能和肢体协调能力显著降低,具体结果详见下图:

 

Reduced treadmill performance of KIKO mice is corrected by α1ACT expression and prevented by prenatal Dox treatment. Treadmill running speed and total travel distance are compared among mice with/without Dox (_1/+1M) treatment at 1 month old. Prenatal inhibition of a1ACT expression prevented the rescue of motor behavior of KIKO: PC-a1ACT mouse in treadmill (left), rotarod (middle), and open field (right).

描述 文件 单价 购物车
啮齿动物步态分析系统
关闭

专业人员会在24小时之内联系您

MSI步态成像分析系统
{{item}}
关闭 提交
Copyright © 2019-2022 南京超维景生物科技有限公司 版权所有 www.ipanqiao.com苏ICP备20009590号-1
联系我们
立即做合同
微信客服
电话咨询

400-998-9826

17302548620

泮桥成像光电商城专业人员会在24小时之内联系您

关闭 提交