网络中的链路预测是指如何通过已知的网络结构等信息,预测网络中尚未产生连接的两个节点之间产生连接的可能性。网络中的顶点代表用户,边代表用户关系,链路预测问题正是对用户未来关系的分析。目前,社会网络链路预测模型主要发展为三大类:
1、基于有监督学习的分类模型,如决策树、朴素贝叶斯、神经网络、SVM、KNN及集成方法中的bagging、boossting和随机森林等。
2、概率模型,该模型主要是建立一组可调参数的模型,然后使用优化策略寻找最优的参数值,使模型能够达到最优,这时两个未连边的节点对的概率就是它们产生连边的条件概率。概率模型的构建方法有贝叶斯网络模型和马尔科夫网络关系模型等。
3、线性代数方法,该方法是通过降阶相似矩阵来计算网络中节点之间的相似性。Kuegis等人利用图的邻接矩阵,并定义一个函数F使得两个时刻的邻接矩阵的差异性最小,这样就将链路预测问题转换成线性代数优化问题,之后再通过矩阵变换和降维的方法将问题转换为一维的最小二乘曲线拟合问题。
参考文献
[1] https://blog.csdn.net/u013159040/article/details/45674119
[2] 傅颖斌, 陈羽中. 基于链路预测的微博用户关系分析[J]. 计算机科学, 2014, 041(002):201-205,244.