随着人工智能发展,很多人都听说过机器学习、深度学习、卷积神经网络这些概念。但图卷积神经网络,却不多人提起。那什么是图卷积神经网络呢?
图卷积神经网络(Graph Convolutional Network)是一种能对图数据进行深度学习的方法,简单的来说就是其研究的对象是图数据(Graph),研究的模型是卷积神经网络[1]。
为什么有图卷积神经网络?和传统方法相比,它好在哪里呢?假设有一张图,要做分类,传统方法需要手动提取一些特征,比如纹理、颜色。然后再把这些特征放到像随机森林等分类器,给到一个输出标签,告诉它是哪个类别。而深度学习是输入一张图,经过神经网络,直接输出一个标签。特征提取和分类一步到位,避免了手工提取特征或者人工规则,从原始数据中自动化地去提取特征,是一种端到端(end-to-end)的学习。相较于传统的方法,深度学习能够学习到更高效的特征与模式。
卷积神经网络很好,但是它研究的对象还是限制在Euclidean domains的数据。什么是Euclidean data? Euclidean data最显著的特征就是有规则的空间结构,比如图片是规则的正方形栅格,比如语音是规则的一维序列。而这些数据结构能够用一维、二维的矩阵表示,卷积神经网络处理起来很高效。
但是我们的现实生活中有很多数据并不具备规则的空间结构,称为Non Euclidean data。比如推荐系统、电子交易、计算几何、脑信号、分子结构等抽象出的图谱。这些图谱结构每个节点连接都不尽相同,有的节点有三个连接,有的节点有两个连接,是不规则的数据结构。
参考文献
[1] 常亮, 邓小明, 周明全, et al. 图像理解中的卷积神经网络[J]. 自动化学报, 2016, 42(9).