定义
隐式神经表示(Implicit Neural Representations)是指通过神经网络的方式将输入的图像、音频、以及点云等信号表示为函数的方法[1] 。
对于输入x找到一个合适的网络F使得网络F能够表征函数Φ由于函数Φ是连续的,从而使得原始信号是连续的、可微的。这么干的好处在于,可以获取更高效的内存管理,得到更加精细的信号细节,并且使得图像在高阶微分情况下仍然是存在解析解的,并且为求解反问题提供了一个全新的工具。
以图像信号的隐式神经表示举例:
对于图像v而言,对于每个图像平面内的像素点存在像素的坐标(x,y),同时存在每个像素的RGB值,使用一个神经网络学习坐标(x,y)和RGB值的关系,得到训练后的网络Φ。这里的Φ就是图像v的隐式神经表示。
图 1 图像信号的隐式神经表示
参考文献
[1] Sitzmann, Vincent et al. “Implicit Neural Representations with Periodic Activation Functions.” ArXiv abs/2006.09661 (2020): n. pag.