拉普拉斯定律

2021-08-11 09:37:35 浏览:1612

概述

拉普拉斯变换得名自法国天文学家暨数学家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在概率论的研究中首先引入了拉氏变换。

拉普拉斯方程(Laplace’s equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名[1]

拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为:,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。

拉普拉斯(Laplace)定律 P=2T/r。P 代表肺泡回缩力,T代表表面张力,r代表肺泡半径。肺回缩力与表面张力成正比,与肺泡的半径成反比。

Ⅱ型肺泡上皮细胞合成和释放肺泡表面活性物质(alveolar surfactant),然后分布于肺泡的内衬层的液膜,能随着肺泡的张缩而改变其分布浓度,用来减少肺泡表面张力。表面张力增加,大肺泡容易破裂小肺泡容易萎缩,不利于肺的稳定[2,3]

拉普拉斯定律,是工程数学中常用的一种积分定律。它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。

参考文献

[1] https://baike.baidu.com/item/拉普拉斯方程
[2] 段宏岩, 谭静范, 陈希琳,等. 拉普拉斯定律在医学领域中的应用探讨[J]. 中国中医肛肠教育研讨会暨第十二届中日大肠肛门病学术交流会论文集, 2010.

超声成像

作          者: 泮桥成像光电商城

出          处: https://www.ipanqiao.com/entry/838

版          权:本文版权归泮桥成像光电商城所有

免责声明:本文中使用的部分文字内容与图片来自于网络,如有侵权,请联系作者进行删除。

转          载:欢迎转载,但必须保留上述声明;必须在文章中给出原文链接;否则必究法律责任。

Copyright © 2019-2022 南京超维景生物科技有限公司 版权所有 www.ipanqiao.com苏ICP备20009590号-1
联系我们
立即做合同
微信客服
电话咨询

400-998-9826

17302548620

快速留言

泮桥成像光电商城专业人员会在24小时之内联系您

关闭 提交